Seoul, 6 December 2010

Seminar on New & Renewable Energy Netherlands Embassy, Korea Korea Wind Energy Industry Association

Dynamic Tidal Power

Introduction by:

Dimitri de Boer Team Leader EU Programs United Nations Industrial Development Organization ITPO - China

Revolving Tides in Yellow Sea

 Can Korea generate up to 20% of national power consumption from the tides with a few big projects?

Performance

- \$ 5,000 20,000 MW per dam (Sihwa Plant
 = 254 MW).
- one large plant (15 GW):
 - Equal to 60 Sihwa dams
 - Could power 6 million Koreans with renewable energy
 - More than 10% of total
 South Korea consumption

Benefits to Korea

- Milestone national project
- Achieve and exceed renewable energy targets
- Reinforce Korean position as innovation leader

Major economic boost

Combine with Offshore Wind

- Easier Installation and Maintenance
- Reduced Exposure to Wave Action
- Improved Accessibility -> Reduced
 Downtime
- Wind Turbines on Dam

Are You Sure?

- Advanced, calibrated numerical tidal model, accuracy of predicted head within 10%
- Physics of DTP have been proven in natural peninsula and civil projects (Afsluitdijk, Delta Works)
- Entire dam can be built using existing technology

* Tidal model used: Delft 3D, considering Mass conservation, Gradients in the water levels, Convective acceleration, Coriolis force, Exchange of horizontal momentum through eddy viscosity, and Bed friction

Afsluitdijk 1920-1924-1932, NL 荷兰Afsluitdijk大坝

Finished dike 32 km in 1932

1924 temporary dike 12 km long, allowing tide to move in and out

Floating-in caissons Veersegat dam 1961, NL 荷兰的模块桥 坝

Delta Werken, NL, 1950 - 1997

Power Generation: Turbines

- Bi-directional, low head turbines
- 1000 2500 units, 4 MW 8 MW per unit

3D Cut-out of Dam Caisson (Artist Impression)

Theory: Wave Mechanics

The **tidal wave** moves in one direction, from left to right along the coast, But the **tidal flow** oscillates, from left to right

and back

Power Generation

High and low tide occur simultaneously north and south of the dam. Hydraulic head drives bi-directional turbines installed along the length of the dam.

Theory: Simplified Analytical Model

Oscillating tidal flow around fixed dam

Head* – H over straight dam:

 $H = 0.05 \text{ x } \text{D x } \text{V}_{\text{max}}$

D = Length of the dam

V_{max} = Maximum velocity of tidal flow (as approximation of maximum acceleration)

* Hydraulic head: Water level differential between the sides of the dam. The level of head determines the power generating potential of the dam

Source: Kolkman

Power Generation for T Dam

Research Needed

- Social and Environmental Impacts and Mitigation
- Integration with Grid
- Seabed Morphology
- Coastal Protection

Research Needed (cont.)

- Detailed Site-Specific Numerical Modelling
- Power Generation / Turbine Design
- Construction Methods
- In-Depth Economic Analysis

Korean – Dutch Joint Development

Intellectual Property

In time, Korean endogenous innovation + potential buyouts of IP would result in Korean majority or full ownership of related IP

China GDP-Energy-Electricity Growth

• Electricity demand has grown over tenfold between 1980 and 2010

Source: State Grid Corporation of China

• The rate of growth is forecast to decline, but overall electricity demand is still expected to triple up to 2030

Thank You!

Dimitri de Boer Team Leader EU Programs United Nations Industrial Development Organization ITPO – China <u>dimitri@unidoitpo.org.cn</u>